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Surrogate data test for nonlinearity including nonmonotonic transforms
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~Received 13 January 2000!

It is shown that monotonicity of the transform in the surrogate data test, which diminishes the applicability
of the test, is not necessary and concerns only the prominent algorithm of amplitude adjusted Fourier transform
~AAFT! for surrogate data generation. The failure of AAFT under nonmonotonicity is explained and a modi-
fied algorithm appropriate for nonmonotonic transforms, called corrected AAFT~CAAFT!, is proposed. The
superiority of CAAFT over AAFT is demonstrated with simulated and real data and compared also to the
iterated AAFT algorithm.
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Nonlinear analysis of time series, and especially meth
based on chaos theory, have evidently contributed towar
better understanding of many physical phenomena obse
often through a single quantity@1#. On the other hand, som
classes of linear stochastic processes can fool the nonli
methods to give estimates of low-dimensional determinis
nonlinearity, and chaos@2#. The surrogate data test has be
invented in order to rule out this possibility before the ar
nal of nonlinear methodology can be put forward@3,4#.

The most general null hypothesisH0 for the test is that the
original scalar datax5@x1 , . . . ,xn#8 are generated by a
Gaussian~normal! process measured through a static a
possibly nonlinear transformh, i.e., xi5h(si), i 51, . . . ,n,
ands5@s1 , . . . ,sn#8 the normal time series. To testH0 , M
surrogate data representingH0 are generated, a nonlinea
method is applied, and if the derived estimateq0 on the
original data does not lie in the distribution of the estima
q1 , . . . ,qM on the surrogate dataH0 is rejected.

The monotonicity ofh has been considered as an ad
tional prerequisite for the implementation of the test and
prominent algorithm for generating surrogate data, the
called amplitude adjusted Fourier transform~AAFT!, is
based on this assumption@3,5,6#. However, monotonicity of
h cannot be asserted when dealing with real data. In
Rapid Communication, we argue against this constraint
propose a correction to the AAFT algorithm~CAAFT!, to be
used instead of AAFT for any transformh. So, through the
use of CAAFT we establish the applicability of the test
real applications. The important concept in our approac
that for any time series, one can construct a normal t
series, which under a monotonic transform possesses th
tocorrelation and amplitude distribution of the given data

According to H0, a surrogate data setz5@z1 , . . . ,zn#8
must preserve the sample autocorrelationr of the original
data, i.e.,r x(t)5r z(t), t51, . . . ,tmax, and the sample am
plitude distribution, i.e.,Fx(x)5Fz(z), whereFx(x) is the
sample cumulative density function~CDF! of xi . It was re-
cently shown that AAFT does not fulfill the first conditio
when h is nonmonotonic and favors rejection ofH0 even
when nonlinearity is not evident@7#. Thus, reported rejec
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tions using AAFT in numerous applications~e.g., see Ref.
@8#! should be reexamined as suggested in@9#.

The AAFT algorithm assumes thath is monotonic and
first simulatesh21 ~by reordering normal white noise to th
rank order ofx, call it y), then destroys any possible nonlin
ear dynamics~making phase randomization, call the deriv
data setyFT) and finally simulatesh ~reordering the original
data x to the rank order ofyFT) to get the surrogate dat
setz.

Let us suppose first that the given time series is accord
to H0 and h is monotonic. Then AAFT performs well be
cause the approximation ofh21 and h in steps 1 and 3,
respectively, is successful. IfF0 denotes the normal CDF
~the same forsi , yi , andyi

FT!, the reordering in step 1 read
@10#

yi5g21~xi !5F0
21

„Fx~xi !…, ~1!

and consequentlyg21 coincides withh21, up to a normal-
ization factor, due to the uniqueness of the inverse o
monotonic functionh transforming a normal time series t
the observed time series@11#. The reconstruction ofh21 in
Eq. ~1! gives a normal time seriesy with r y(t)5r s(t) and
the same holds foryFT, so thats, y, andyFT are all realiza-
tions of the same normal process. Moreover,r s(t) is related
to r x(t) through a functionf depending ong, i.e., r x(t)
5f„r s(t)… @12#.

Accordingly, the reordering in step 3 reads

zi5g~yi
FT!5Fx

21
„F0~yi

FT!…, ~2!

and h5g, r z(t)5f„r yFT(t)…5f„r s(t)…. Thus r z(t)
5r x(t) and the conditions ofH0 are satisfied.

Let us suppose now thath is nonmonotonic. In this case
g is different fromh, g21 is well defined as bothg andg21

are monotonic by construction, andy has still normal mar-
ginal distribution, but now its joint distribution is not in gen
eral normal. This can be verified formally using a test f
joint normal distribution@13#, or simply by testing whether
an odd joint moment such asm125^yi ,yi 2t

2 & is different
from zero. On the other hand,yFT has normal joint distribu-
tion by construction and has stillr yFT(t)5r y(t). Obviously,
applyingg to the components ofy will give x, but wheng is
applied to the components ofyFT will give z, but nowr z(t)
R25 ©2000 The American Physical Society
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Þrx(t), because the output ofg21 @y in Eq. ~1!# and the input
of g @yFT in Eq. ~2!# are time series from different process
~non-normal and normal, respectively!. So, the flaw in the
AAFT algorithm whenh is nonmonotonic is that, thoughs
may be normal, a non-normaly ~but with normal marginal
distribution! is obtained in the first step and then the ma
of linear correlations fails when a normalyFT having the
same autocorrelation asy is transformed back in step 3.

The assumption of a normals, treated so far, is consisten
with the null hypothesis, but the examined time series ma
well stem from a non-normal process, e.g., from a cha
process. In this case and regardless of the monotonicity oh,
the result after step 1 of the AAFT algorithm is the same
for the case of normals and non-monotonich: y has normal
marginal distribution but not normal joint distribution.

We present now a correction of the AAFT algorithm
CAAFT, so that the original autocorrelation is matched ev
when y is not normal. InterpretingH0 slightly differently
than in AAFT, we want to find a normal time seriesu with
autocorrelationr u ~different in general fromr s) such that
through a transform likeg it gives w and r x(t)5r w(t)
5f„r u(t)… for t51, . . . ,tmax, wheref depends ong. Note
that basically the problem is to find the correctr u . Then a
normal time seriesu can be generated fromr u and the de-
sired surrogate dataw is directly derived through theg trans-
form defined in Eq.~2!.

Given r x , the problem is formed as to find the approx
mate inverse functional relation tof, call it c, where c
5f21 if f21 exists, so thatr u(t)5c„r x(t)…. We have al-
ready establishedr z(t)5f„r y(t)…, wherez is the AAFT sur-
rogate, and thusc can be approximated from the graph
r y(t) versusr z(t) for t50, . . . ,tmax. An estimateĉ can be
obtained simply by linear interpolation, i.e.,ĉ is a piecewise
linear function. Note that, thoughĉ is not monotonic by
definition, our simulations hint at monotonicĉ, so thatc
5f21 appears to hold approximately. We found linear
terpolation superior to cubic spline interpolation, but oth
techniques may estimateĉ better.

Given r u(t) from r u(t)5ĉ„r x(t)…, the coefficients of the
corresponding autoregressive~AR! model can be found from
the Yule-Walker equations, solved efficiently through t
Levinson algorithm@14#. The AR model can be stabilize
first, if any roots of the characteristic polynomial lie out
the unit circle, and then be used to generateu.

In practice, the accuracy inr x(t).r w(t) depends heavily
on the quality of the approximation ofc. This, in turn, does
not seem to depend so much on the fitting method as on
sparsity of the data pairs„r z(t),r y(t)…. Increasingtmax be-
yond lags of significant autocorrelation does not really
hance the approximation as the additional data pairs are
dered at the same range of (r z ,r y) values. So, a good choic
for tmax is at the range of lags for whichr x levels off to zero.
To maintain good accuracy in the autocorrelation, we p
pose to run the algorithm a number of timesK and pick out
the r u that givesr w closest tor x @15#. Then we use the
corresponding AR model to generate theM surrogate data
sets. This approach is close to the so-called ‘‘typical reali
tion’’ approach found to have less power in rejectingH0 in
@16#, but this is not actually an undesired property for re
applications@9#.
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The steps of the complete algorithm CAAFT are as f
lows:

~1! Make the three steps of AAFT to generatey, yFT, and
z.

~2! Choosetmax and computer z(t), r x(t) and r y(t) for
t51, . . . ,tmax.

~3! Find the linear interpolationĉ of r y(t) as a function
of r z(t).

~4! Computer u(t) from r u(t)5ĉ„r x(t)….
~5! Choose a suitable orderp for AR ~e.g.,p5tmax), and

estimate the coefficients of AR(p) from r u .
~6! Generateu using the stabilized AR model.
~7! Transformu to w @wi5Fx

21
„F0(ui)…, i 51, . . . ,n#.

~8! Repeat the steps 1–7K times to generatew1, . . . ,wK.
~9! Compute$r w

1 , . . . ,r w
K% and find the one,r w

k , closest to
r x .

FIG. 1. ~a! Linear interpolationĉ ~solid line! of „r z(t),r y(t)…,
t50, . . . ,10 timesteps~open circles! computed on the Henon dat

@pair ~1,1! for t50 is not shown#. The mappingr u(t)5ĉ„r x(t)… is
shown by a gray vertical line for eachr x(t), t51, . . .,10. For

extrapolation towards21 ~dashed line!, ĉ is arbitrarily defined as
r u(t)5r x(t)@r y(t* )/r z(t* )#, wheret* is the lag of the smalles
r z . ~b! The autocorrelation for the original and the 40 surrog
data~computed in step 10!, as denoted in the legend.
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~10! Use the AR model that corresponds to the selectek
trial and generateM surrogate data by repeating the step
and 7M times.

To elucidate, the algorithm is illustrated for a time ser
of 512 samples from the Henon map, for which the AAF
algorithm generates surrogate data with biased autocor
tion, e.g.,r x(1)520.32 and^r z(1)&520.41 with standard
deviation~SD! 0.02 for 40 AAFT surrogates. In one replica
tion of the CAAFT algorithm, the desiredr u is approximated
using the linear interpolation of the pairs„r z(t),r y(t)…, as
shown in Fig. 1~a!. Repeating steps 1–7K times,K candidate
stabilized AR models~hereK55 andp5tmax510) are de-
signed from the respectiver u , and the one giving rise to th
surrogatew with the closest autocorrelation to the original
selected~see@15#!. Based on this AR model,M surrogates
are generated and, as shown in Fig. 1~b!, their autocorrela-
tions match well the original one with somehow larger va
ance than for the AAFT case, e.g.,^r w(1)&520.31 with SD
0.06.

Note that the computational load depends mainly onK.
Overall, CAAFT is not more computationally intensive tha
AAFT when K,M . For K5M540, used in the example
below, CAAFT is only about twice slower than AAFT.

We applied the CAAFT algorithm to different known sy
tems~linear stochastic and chaotic! and different transforms
h ~monotonic and nonmonotonic! and confirmed that it al-
ways preserves the original autocorrelation with some v
ance, which depends on the data size.

In Fig. 2, we compare AAFT and CAAFT for the squa
of an AR~1! process using as discriminating statistics for t
test the correlation coefficientr of the fit with Volterra poly-
nomials@i.e., polynomials on (xi , . . . ,xi 2(m21)) of a maxi-

FIG. 2. The correlation coefficientr of the fit with Volterra
polynomials (m55) as a function of the polynomial termsi, for the
square transformed AR~1! model @si 1150.310.8si1ei , whereei

;N(0,120.82) and white# and its AAFT and CAAFT surrogate
~upper and lower panel, respectively!. The averager from 100
realizations of 2048 samples from the AR~1! model is shown as a
black line and the corresponding SD as error bars. The gray z
denote the average diversity ofr for the surrogate data~first the
mean and SD ofr from the 40 surrogate data for each realization
computed and then averaged over the 100 realizations; these
aged mean and SD form the gray area!. The vertical line distin-
guishes linear from nonlinear polynomial terms.
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mum degreed, hered52#, in order to view differences in
both the linear and nonlinear correlations~the polynomials of
the firstm11 terms are linear! @7,17#. Obviously, the AAFT
surrogate data mismatch the original linear correlations,
the CAAFT surrogates do not. We found for both the line
and nonlinear polynomials thatH0 was rejected always fo
AAFT but not for CAAFT, using either the significanceS
(S.1.96 suggests rejection at the 95% confidence level! or
the rank ordering.

We apply the test to two electroencephalogram~EEG!
data sets under different physiological conditions, i.e.,
EEG recording~sampling timets50.01 s,n52048) many
hours before an epileptic seizure of a human subject, wh
is believed to be high-dimensional and thus hard to de
nonlinearity@9#, and another during an epileptic seizure (ts
50.01 s, n51700), which was reported to be low
dimensional and nonlinear@18#. We use the statistics from
the Volterra polynomials, AAFT and CAAFT surrogates,
well as surrogates generated by the iterated AAFT algorit
~IAAFT ! @4#, which is supposed to match well the origin
linear autocorrelations but gives little insight into the proce

es

er-

FIG. 3. ~a! The correlation coefficientr of the fit with Volterra
polynomials (m510) as a function of the polynomial termsi, for
the first EEG data set~black line! and its AAFT, IAAFT, and
CAAFT surrogates~gray lines in the upper, middle, and lower pa
els, respectively!. The vertical line distinguishes linear from nonlin
ear polynomial terms.~b! The same for the second EEG data se
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that generates the surrogate data. For the first data se
nonlinearity is observed from the fit, as shown in Fig. 3~a!.
This is confirmed with CAAFT as the fit for the surrogates
equally good. On the other hand, the nonlinear fit for
AAFT surrogates is clearly worse suggesting the rejection
H0, erroneously as the same discrimination holds for
linear fit. In the case of IAAFT,H0 is also rejected for some
polynomials~for all linear and the last 20 nonlinear polyno
mials, S.2 was found!, due to the small variance and th
slight bias in the linear fit. For the epileptic EEG evidence
nonlinearity is implied by the improvement of the fit with th
inclusion of the first couple of nonlinear polynomial term
as shown in Fig. 3~b!. The increase inr for the original data
is discriminated clearly from all three types of surrogat
but at different levels, determined by the bias in the line
correlations~large for AAFT, small for IAAFT, and none for
CAAFT!, and the variance~particularly small for IAAFT!.
For AAFT, the problem is thatH0 is rejected at about the
same large confidence level using linear and nonlinear p
nomials, while for CAAFT rejections are properly obtaine
only with the nonlinear fit.

In conclusion, we have established that monotonicity
s
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the transform is not required for the implementation of t
surrogate data test for nonlinearity and we proposed a
rection to the AAFT algorithm~CAAFT! to generate prope
surrogate data. The rationale with CAAFT is to circumve
the problem of nonmonotonicity by finding a suitable norm
process, which under a monotonic transform gives surrog
data with approximately the same autocorrelation as
original one, even if the original data can be seen as n
monotonic transform of a normal process. The approxim
tion of the original autocorrelation is unbiased, so that
test with CAAFT is more accurate than with AAFT. Th
variance in this approximation is often as large as for AA
and always larger than for IAAFT. Therefore, the test w
CAAFT turns out to be more conservative than with IAAF
However, this should not be considered as a drawback of
CAAFT algorithm, but rather as a welcome property, p
venting immature rejections ofH0. On the other hand, if the
time series passes the test with CAAFT the evidence
nonlinearity is more reliable than when using AAFT
IAAFT surrogates.

The author thanks Pa˚l Larsson for providing the EEG
data and Holger Kantz for his valuable comments.
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