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Surrogate data test for nonlinearity including nonmonotonic transforms
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It is shown that monotonicity of the transform in the surrogate data test, which diminishes the applicability
of the test, is not necessary and concerns only the prominent algorithm of amplitude adjusted Fourier transform
(AAFT) for surrogate data generation. The failure of AAFT under nonmonotonicity is explained and a modi-
fied algorithm appropriate for nonmonotonic transforms, called corrected AGARFT), is proposed. The
superiority of CAAFT over AAFT is demonstrated with simulated and real data and compared also to the
iterated AAFT algorithm.

PACS numbd(s): 05.45.Tp, 05.10.Ln

Nonlinear analysis of time series, and especially methodsons using AAFT in numerous applicatioris.g., see Ref.
based on chaos theory, have evidently contributed towards[&]) should be reexamined as suggestefin
better understanding of many physical phenomena observed The AAFT algorithm assumes thatis monotonic and
often through a single quantifil]. On the other hand, some first simulatesh™* (by reordering normal white noise to the
classes of linear stochastic processes can fool the nonlinet&nk order ofx, call ity), then destroys any possible nonlin-
methods to give estimates of low-dimensional determinismear dynamicgmaking phase randomization, call the derived
nonlinearity, and chad®]. The surrogate data test has beendata set"") and finally simulates (reordering the original
invented in order to rule out this possibility before the arse-datax to the rank order of/"™") to get the surrogate data

nal of nonlinear methodology can be put forwB4]. setz _ _ _ o _
The most general null hypothes, for the test is that the Letus suppose first that the given time series is according

original scalar datax=[x;, ... X,]’ are generated by a to Ho andh is monotonic. T@?n AAFT. performs well be-

Gaussian(norma) process measured through a static and-ayse t.he approxmaﬂon ¢f = andh in steps 1 and 3,

possibly nonlinear transform, i.e., x;=h(s), i=1 n respectively, is successful. F, denotes the normal CDF

ands=[s,, ....s] the norrr;al tir"né seriels.' To téblto, M (the same fos;, y;, andy "), the reordering in step 1 reads

surrogate data representiidy, are generated, a nonlinear [10]

mgt_hod is applied, anq |f the dgnyed .estlmau@e on t.he yi:gil(xi):Fal(Fx(Xi))y 1)

original data does not lie in the distribution of the estimates

di, .- ..0w ON the surrogate datd, is rejected. and consequentlg~! coincides withh~%, up to a normal-

The monotonicity ofh has been considered as an addi-ization factor, due to the uniqueness of the inverse of a
tional prerequisite for the implementation of the test and thenonotonic functionh transforming a normal time series to
prominent algorithm for generating surrogate data, the sothe observed time seri¢d&1]. The reconstruction ofi~* in
called amplitude adjusted Fourier transforfAAFT), is  Eq. (1) gives a normal time seriggwith r (7)=r¢(7) and
based on this assumpti¢8,5,6. However, monotonicity of the same holds foy™", so thats, v, andyF¥ are all realiza-
h cannot be asserted when dealing with real data. In thisons of the same normal process. Moreovefy) is related
Rapid Communication, we argue against this constraint antb r,(7) through a function¢ depending org, i.e., ry(7)
propose a correction to the AAFT algorithil@AAFT), to be = ¢(ry(7)) [12].
used instead of AAFT for any transform So, through the Accordingly, the reordering in step 3 reads
use of CAAFT we establish the applicability of the test in
real applications. The important concept in our approach is zi=g(y[=F  (Fo(y["), 2)
that for any time series, one can construct a normal time
series, which under a monotonic transform possesses the a@d h=g, r,(7)=¢(r(7))=¢(r(7)). Thus r,(7)
tocorrelation and amplitude distribution of the given data. =r(7) and the conditions ofl, are satisfied.

According toHg, a surrogate data set=[z,, ... ,z,]’ Let us suppose now thétis nonmonotonic. In this case,
must preserve the sample autocorrelationf the original g is different fromh, g~ 'is well defined as botly andg*
data, i.e.r,(7)=r,(7), 7=1, ... Tmax. and the sample am- are monotonic by construction, arydhas still normal mar-

plitude distribution, i.e.F,(Xx)=F,(z), whereF,(x) is the ginal distribution, but now its joint distribution is not in gen-
sample cumulative density functid€DF) of x;. It was re-  eral normal. This can be verified formally using a test for
cently shown that AAFT does not fulfill the first condition joint normal distribution[13], or simply by testing whether
when h is nonmonotonic and favors rejection bf, even an odd joint moment such gg1,=(y; ,yi2,7> is different
when nonlinearity is not evideri7]. Thus, reported rejec- from zero. On the other hangf," has normal joint distribu-
tion by construction and has stillrr(7) =r (7). Obviously,
applyingg to the components of will give x, but wheng is
*Email address: dimitris@stats.gla.ac.uk applied to the components gf" will give z but nowr ,(7)
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#r,(7), because the output gf * [y in Eq.(1)] and the input (@)

of g[y""in Eq. (2)] are time series from different processes 03 ' ' ' '

(non-normal and normal, respective5o, the flaw in the 0.2}

AAFT algorithm whenh is nonmonotonic is that, though

may be normal, a non-normgl (but with normal marginal 0.1¢

distribution is obtained in the first step and then the match
of linear correlations fails when a normgf" having the
same autocorrelation asis transformed back in step 3. 0.4}
The assumption of a norma| treated so far, is consistent
with the null hypothesis, but the examined time series may as  -0.2t
well stem from a non-normal process, e.g., from a chaotic
process. In this case and regardless of the monotonicity of -0.3¢
the result after step 1 of the AAFT algorithm is the same as
for the case of norma and non-monotonit: y has normal
marginal distribution but not normal joint distribution. -03
We present now a correction of the AAFT algorithm, -
CAAFT, so that the original autocorrelation is matched even
wheny is not normal. Interpretingd, slightly differently (b)
than in AAFT, we want to find a normal time serigswith 0.4
autocorrelationr,, (different in general fronrg) such that

S IR R I R 1
S5 -04 -03 -0.2 —0r.1 0 0.1 0.2

z

through a transform likeg it gives w and ry(7)=r(7) 03

=¢(ry (7)) for =1, ... 7max, Where¢ depends omg. Note 0.2r

that basically the problem is to find the corregt Then a o4l

normal time seriesl can be generated from, and the de-

sired surrogate data is directly derived through the trans- . or

form defined in Eq(2). 01l
Givenr,, the problem is formed as to find the approxi- o2

mate inverse functional relation te, call it , where
=¢ 1if ¢! exists, so that ,(7)=¢(r (7). We have al- _0.3}
ready established,(7) = ¢(ry(7)), wherezis the AAFT sur-

rogate, and thugy can be approximated from the graph of —0.4r

ry(7) versusr,(7) for 7=0, ... Tmax. AN e§timatefp can be ~0.5; 5 ) 5 8 10
obtained simply by linear interpolation, i.ek,is a piecewise T

linear function. Note that, thoughy is not njonotonic by FIG. 1. (a) Linear interpolationys (solid line) of (r(7),r,(7)),
definition, our simulations hint at monotonig, so thatyy  r=0,..., 10 timesteps(open circles computed on the Henon data

=¢ ! appears to hold approximately. We found linear in-[pair (1,1) for =0 is not showi The mapping ,(7) = #(r (7)) is
terpolation superior to cubic spline interpolation, but othershown by a gray vertical line for eaah(7), =1, ...,10. For

techniques may estimatg better. extrapolation towards- 1 (dashed ling ¢ is arbitrarily defined as
Givenr,(7) fromr(7)= iAﬁ(rx( 7)), the coefficients of the ru(7)=ry(D[ry(7)/r,(7)], where7* is the lag of the smallest
corresponding autoregressi¢&R) model can be found from Tz- (b) The autgcorrelation for the ori.ginal and the 40 surrogate
the Yule-Walker equations, solved efficiently through thedat@(computed in step 10as denoted in the legend.
Levinson algorithm[14]. The AR model can be stabilized
first, if any roots of the characteristic polynomial lie out of ~ The steps of the complete algorithm CAAFT are as fol-
the unit circle, and then be used to generate lows:
In practice, the accuracy in(7)=r,(7) depends heavily

on the quality of the approximation @f. This, in turn, does (1) Make the three steps of AAFT to genergte/™, and
not seem to depend so much on the fitting method as on the

sparsity of the data pai§ ,(7),r(7)). Increasingrmay be- ' (2) ChOOSETmay and computa ,(7), r,(7) andr(7) for

yond lags of significant autocorrelation does not really en-__ T
v e Tmax:

hance the approximation as the additional data pairs are or- . . . A .
dered at the same range a,(r,) values. So, a good choice o §3le;md the linear interpolation) of r (7) as a function
A7),

for 7,ax 1S at the range of lags for whiat levels off to zero. .
To maintain good accuracy in the autocorrelation, we pro- (4) Computer () from r(7) = (r.(7)).

pose to run the algorithm a number of tim€sand pick out (5) Choose a suitable orderfor AR (e.g.,p= Tmay), and
the r,, that givesr,, closest tor, [15]. Then we use the €stimate the coefficients of AR] fromr,.

corresponding AR model to generate thlesurrogate data (6) Generateu using the stabilized AR model.

sets. This approach is close to the so-called “typical realiza- (7) Transformu to w [Wi:'_:x_l(Fo(Ui)), i=1,...n]
tion” approach found to have less power in rejectidg in (8) Repeat the steps 1-K7times to generate', . .. w.
[16], but this is not actually an undesired property for real  (9) Compute{ry,, ... ri} and find the one¥,, closest to

applicationg 9]. My
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FIG. 2. The correlation coefficient of the fit with Volterra Aumkber of palymemislwEms

polynomials (n=5) as a function of the polynomial termsor the (b)
square transformed AR) model|[s;,;=0.3+0.8s;+¢;, whereg; 0.9 . ,
~M®0,1-0.8) and whitd and its AAFT and CAAFT surrogates ~
(upper and lower panel, respectivelyThe averagep from 100 087’_/ AAET

realizations of 2048 samples from the AR model is shown as a
black line and the corresponding SD as error bars. The gray zones
denote the average diversity pffor the surrogate datéirst the
mean and SD of from the 40 surrogate data for each realization is
computed and then averaged over the 100 realizations; these aver-
aged mean and SD form the gray greg@he vertical line distin-
guishes linear from nonlinear polynomial terms.

0.9
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(10) Use the AR model that corresponds to the selekted
trial and generat®! surrogate data by repeating the steps 6
and 7M times.
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To elucidate, the algorithm is illustrated for a time series
of 512 samples from the Henon map, for which the AAFT
algorithm generates surrogate data with biased autocorrel
tion, e.g.,r(1)=—0.32 and(r,(1))=—0.41 with standard
deviation(SD) 0.02 for 40 AAFT surrogates. In one replica-
tion of the CAAFT algorithm, the desiredq, is approximated
using the linear interpolation of the paifs,(7),r (7)), as
shown in Fig. 1a). Repeating steps 1+ times,K candidate
stabilized AR modelgshereK=5 andp= 75— 10) are de- mum degreed, hered=2], in order to view differences in
signed from the respectiwg,, and the one giving rise to the both the linear and nonlinear correlatidise polynomials of
surrogatev with the closest autocorrelation to the original is the firstm+ 1 terms are lineaf7,17]. Obviously, the AAFT
selected(see[15]). Based on this AR modeM surrogates surrogate data mismatch the original linear correlations, but
are generated and, as shown in Fi¢h)ltheir autocorrela- the CAAFT surrogates do not. We found for both the linear
tions match well the original one with somehow larger vari-and nonlinear polynomials th&t, was rejected always for
ance than for the AAFT case, e.¢r,(1))=—0.31 with SD  AAFT but not for CAAFT, using either the significan®
0.06. (S>1.96 suggests rejection at the 95% confidence Jewel
Note that the computational load depends mainlykon the rank ordering.
Overall, CAAFT is not more computationally intensive than ~ We apply the test to two electroencephalogrétG)
AAFT when K<M. For K=M =40, used in the examples data sets under different physiological conditions, i.e., an
below, CAAFT is only about twice slower than AAFT. EEG recording(sampling timers=0.01 s,n=2048) many
We applied the CAAFT algorithm to different known sys- hours before an epileptic seizure of a human subject, which
tems(linear stochastic and chaogiand different transforms is believed to be high-dimensional and thus hard to detect
h (monotonic and nonmonotoni@nd confirmed that it al- nonlinearity[9], and another during an epileptic seizurg (
ways preserves the original autocorrelation with some vari=0.01 s, n=1700), which was reported to be low-
ance, which depends on the data size. dimensional and nonlinedd 8]. We use the statistics from
In Fig. 2, we compare AAFT and CAAFT for the square the Volterra polynomials, AAFT and CAAFT surrogates, as
of an AR(1) process using as discriminating statistics for thewell as surrogates generated by the iterated AAFT algorithm
test the correlation coefficiept of the fit with Volterra poly-  (IAAFT) [4], which is supposed to match well the original
nomials[i.e., polynomials onX;, ... Xi_(m-1)) of a maxi- linear autocorrelations but gives little insight into the process

FIG. 3. (a) The correlation coefficiend of the fit with Volterra
%blynomials (m=10) as a function of the polynomial termsfor
the first EEG data setblack line and its AAFT, IAAFT, and
CAAFT surrogateggray lines in the upper, middle, and lower pan-
els, respectively The vertical line distinguishes linear from nonlin-
ear polynomial termsib) The same for the second EEG data set.
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that generates the surrogate data. For the first data set, tlee transform is not required for the implementation of the
nonlinearity is observed from the fit, as shown in Fi¢e)3  surrogate data test for nonlinearity and we proposed a cor-
This is confirmed with CAAFT as the fit for the surrogates isrection to the AAFT algorithm{CAAFT) to generate proper
equally good. On the other hand, the nonlinear fit for thesurrogate data. The rationale with CAAFT is to circumvent
AAFT surrogates is clearly worse suggesting the rejection othe problem of nonmonotonicity by finding a suitable normal
Ho, erroneously as the same discrimination holds for theProcess, which under a monotonic transform gives surrogate
linear fit. In the case of IAAFTH, is also rejected for some data with approximately the same autocorrelation as the
polynomials(for all linear and the last 20 nonlinear polyno- ©riginal one, even if the original data can be seen as non-
mials, S>2 was foundl, due to the small variance and the monotonic transform of a normal process. The approxima-

- o : ' P ; tion of the original autocorrelation is unbiased, so that the
shgh_t blas_ n the Im_ear fit For the epileptic EEG eylde_nce Oftest with CAAFT is more accurate than with AAFT. The
nonlinearity is implied by the improvement of the fit with the

: . ) . . variance in this approximation is often as large as for AAFT
:scgjk?cl)(\)/\l/ﬂ'n?; t'r:1ie fg)s;t _T_?]:ﬁfcgag%ni“n?g: tﬁZI%T?T]ISII (;Zg's’ and always larger than for IAAFT. Therefore, the test with
as snown In Fg. (). P g CAAFT turns out to be more conservative than with IAAFT.
is discriminated clearly from all three types of surrogates

but at different levels, determined by the bias in the "nearHowever, this should not be considered as a drawback of the

correlationglarge for AAFT, small for IAAFT, and none for CAAFT algorithm, but rather as a welcome property, pre-

. . venting immature rejections ¢i,. On the other hand, if the
CAAFT), and the variancéparticularly small for IAAFT). . . : .
For AAFT, the problem is thaH, is rejected at about the time series passes the test with CAAFT the evidence for

. . . . nonlinearity is more reliable than when using AAFT or
same large confidence level using linear and nonlinear poly- y 9

nomials, while for CAAFT rejections are properly obtained IAAFT surrogates.
only with the nonlinear fit. The author thanks Pd.arsson for providing the EEG
In conclusion, we have established that monotonicity ofdata and Holger Kantz for his valuable comments.
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